Formulation#
Phase-field Model of Insulator-Metal Transitions#
The total free energy of a system in the most general form is given by,
where
Variable |
Description |
---|---|
\(\psi(\textbf{r}, t)\) |
Electronic order parameter |
\(\eta(\textbf{r}, t)\) |
Structural order parameter |
\(n(\textbf{r}, t)\) |
Free-electron density |
\(p(\textbf{r}, t)\) |
Free-hole density |
\(n_{d}(\textbf{r}, t)\) |
Neutral defect density |
\(n_{d}'(\textbf{r}, t)\) |
Ionized defect density |
\(T(\textbf{r}, t)\) |
Temperature |
$\phi(\textbf{r}, t) |
Electric potential |
$\textbf{u}(\textbf{r}, t) |
Mechanical displacement |
The various free energy density components are functions of the aforementioned variables and can be defined as follows:
Ginzburg-Landau Potential
\(f_{GL} = \dfrac{a_{1}}{2}\dfrac{T - T_{1}}{T_{1}}\psi^{2} + \dfrac{b_{1}}{4}\psi^{4} + \dfrac{c_{1}}{6}\psi^{6} + \dfrac{a_{2}}{2}\dfrac{T-T_{2}}{T_{2}}\eta^{2}+\dfrac{b_{2}}{4}\eta^{4}+\dfrac{c_{2}}{6}\eta^{6} + \dfrac{g_{2}}{2}\psi^{2}\eta^{2} + \dfrac{G_{1}}{2}(\nabla\psi)^{2} + \dfrac{G_{2}}{2}(\nabla\eta)^{2} + \ldots \)
Charge-carrier free energy density
\(f_{eh} = \dfrac{E_{g}(\psi)}{2}(n+p) + \phi e(p - n) + k_{B}T\bigg[\int_{0}^{n}G_{1/2}^{-1}\bigg(\dfrac{x}{N_{C}}\bigg)dx + \int_{0}^{p}G_{1/2}^{-1}\bigg(\dfrac{x}{N_{V}}\bigg)dx\bigg] - F_{eh, 0}(T,\psi)\)
Defect free energy density
\(f_{def} = \epsilon_{f}(n_{d} + n_{d}') + \epsilon_{d}\nu_{d}n_{d} + e\nu_{d}n_{d}\phi + k_{B}T\bigg[n_{d}ln\dfrac{n_{d}}{N_{d}} + n_{d}'ln\dfrac{n_{d}'}{N_{d}}+(N_{d}-n_{d}-n_{d}')ln\bigg(1-\dfrac{n_{d}+n_{d}'}{N_{d}}\bigg)\bigg]\)
Elastic energy
\(f_{ela} = \dfrac{1}{2}C_{ijkl}(\varepsilon_{ij} - \varepsilon_{ij}^{0} - n_{d}\Lambda\delta_{ij} - n_{d}'\Lambda'\delta_{ij})(\varepsilon_{kl} - \varepsilon_{kl}^{0} - n_{d}\Lambda\delta_{kl} - n_{d}'\Lambda'\delta_{kl})\)
Evolution Equations#
Time-dependent Ginzburg-Landau-like relaxational equation for order-parameters,
Carrier transport,
Defect transport,
Gauss’ law,
Heat transport
Mechanical force balance
Defect-carrier reaction
Carrier recombination
List of physical parameters#
Parameter |
Description |
---|---|
\(a_{1}, b_{1}, c_{1}, T_{1}, a_{2}, b_{2}, c_{2}, T_{2}, g_{1}, g_{2}, G_{1}, G_{2}\) |
Landau coefficients |
\(\gamma_{1}, \gamma_{2}\) |
Kinetic coefficients for relaxational equations |
\(\epsilon_{b}\) |
Background dielectric constant |
\(\Delta\) |
Bandgap coefficient |
\(E_{C}, N_{c}\) |
Conduction band top and effective density of states |
\(E_{v}, N_{v}\) |
Valence band bottom and effective density of states |
\(M_{e}, M_{h}\) |
Electron and hole mobilities |
\(\Gamma_{eh}\) |
Carrier recombination rate |
\(\epsilon_{f}\) |
Ionized defect formation energy |
\(\Lambda, \Lambda'\) |
Neutral and ionized defect volume |
\(\nu_{d}\) |
Defect valence |
\(\epsilon_{d}\) |
Defect electronic level |
\(N_{d}\) |
Defect maximum concentration |
\(D, D'\) |
Ionized and neutral defect diffusion coefficients |
\(\Gamma\) |
Defect-carrier reaction rate |
\(C_{v}\) |
Volumetric heat capacity |
\(C_{ijkl}\) |
Elastic stiffness tensor |